The SAP® BW to HANA Migration Handbook

Rob Frye, Joe Darlak, Dr. Bjarne Berg

- Proven Techniques for Planning and Executing a Successful Migration
- Building a Solid Migration Business Case
- SAP BW on SAP HANA Sizing and Optimization
- Step-by-Step Runbook for the Migration Process
Table of Contents

Preface

1 **Introduction to DMO** 9
 1.1 Strategies for migrating to SAP HANA 10
 1.2 Bringing it all together with DMO 18
 1.3 Navigating this book 19
 1.4 Reading the book 22

2 **Planning the migration** 23
 2.1 Business case 23
 2.2 Staffing 31
 2.3 Sizing the migration 34
 2.4 Budgeting 41
 2.5 Program milestones 44

3 **Hardware, optimization, and SAP BusinessObjects integration** 55
 3.1 Hardware 55
 3.2 Optimization 59
 3.3 What is BI self-service? 65
 3.4 BusinessObjects integration, mobilization, and connection 66

4 **BW cleanup** 79
 4.1 The BW cleanup 12 step-program 80
 4.2 Minimizing database size 87
 4.3 Housekeeping made easy 87
 4.4 Before upgrade task list 89
Table of Contents

5 **Prerequisites for DMO** 93
5.1 Required BW version and service packs 93
5.2 General prerequisites 94
5.3 Unicode conversion 104
5.4 Security conversion 124
5.5 BEx WAD templates 126
5.6 BW on HANA migration checklist 128

6 **The DMO migration** 129
6.1 Step-by-step instructions 129
6.2 Post-migration tasks 158
6.3 Sample DMO task list 164

7 **HANA performance monitoring** 225
7.1 Performance monitoring in HANA Studio 225
7.2 Performance monitoring in SAP BW 229
7.3 Performance monitoring dashboard 237

8 **Summary** 245
8.1 Things to remember 246
8.2 Farewell and good luck! 248

A **About The Authors** 250

B **Index** 253

C **Disclaimer** 257
2 Planning the migration

In the introduction, we discussed the benefits of the DMO process over other options for migrating to SAP HANA. In this chapter, you will learn more about the business case for migrating to SAP HANA, as well as the items that you must consider when planning for the DMO approach.

In Chapter 1, we examined the history of data migrations and began to build the case for choosing the DMO option for your company’s migration from BW to HANA. In this chapter, we will look at several benefits you can use in building your business case for SAP HANA. We will also look at some sample staffing plans, hardware sizing and planning examples, budgeting, and milestones. This information is provided as a baseline to assist you in planning for your company’s DMO process.

2.1 Business case

There are several reasons for migrating your SAP BW system to SAP HANA. The most important reasons are those that provide the greatest advantage to your business. The reasons that provide the most impact include:

- Superior performance with a smaller database footprint
- More agile development and simpler maintenance
- Landscape simplification and real-time reporting
These benefits drive a lower total cost of ownership (TCO), and they can be achieved by migrating without reimplementing or disruption to your existing landscape or reporting scenarios. Keep reading to take a closer look at the reasons for choosing SAP HANA.

2.1.1 Superior performance with a smaller database footprint

Just by migrating your existing system to SAP HANA you will achieve superior data loading and query performance. On average, BW queries are at least nine times faster compared to the same queries in an SAP BW system not running on HANA.

SAP HANA is fast

Based on data gathered from our projects to date, SAP HANA executes queries 9-23 times faster (16 times on average) than other databases. So the minimum expected performance improvement is around nine times faster for queries in HANA.

The increased speed of data access from external tools is also improved. For example, a database with 1.2 billion rows of data returned aggregated results in BO Explorer in around 4.5 seconds. One study published by SAP found that Web Intelligence reports loaded approximately 12 times faster.

It can be difficult to quantify this speed improvement in terms of financial savings. Let’s look at a simple example.
For a complete list of version requirements for SAP BW on HANA, check the SAP product availability matrix (PAM) for each tool to ensure connectivity for existing data sources. http://scn.sap.com/DOC-8693

Let's assume that there are 2,000 query executions per day and the average time is 20 seconds in the legacy database. The total time spent waiting for query results is over 11.1 hours per day. With SAP HANA, the wait time is 1.2 hours per day, which is a saving of 9.9 hours per day, or 2,376 hours per year!

Even data loads into traditional InfoCubes and DSOs are around twice as fast (at least) as loading data into a traditional BW system. This means you can load data twice as many times per day as you did before migrating to SAP HANA and still have more spare time in your load window!

The database size for BW on HANA is significantly smaller than the size required in traditional BW and BWA systems. The speed of the in-memory SAP HANA calculation engine allows super-fast aggregation of data and faster access to raw data, so there is no need to pre-calculate aggregates or invest in obsolete hardware for the BW Accelerator (BWA). SAP HANA is also a columnar database which allows for significant compression compared to relational databases. Generally, a compression factor of 3-5 times is expected for most tables compared to Oracle, for example. The speed of the SAP HANA database also eliminates the need to build InfoCubes in SAP BW and hence, eliminates additional data. This allows your company to spend less on licen-
PLANNING THE MIGRATION

...ing and lowers the total cost of owning an SAP BW on HANA system.

SAP HANA licensing

SAP HANA licensing is paid only on the production database, which saves costs if you have many non-production systems in your landscape.

2.1.2 More agile development and simpler maintenance

Before SAP HANA, SAP BW systems relied on the Layered Scalable Architecture (LSA) to provide acceptable performance for data loading and query executions. LSA defined best practices for moving data through several staging or persisted data warehouse layers before making the data available for reporting in the enterprise data warehouse (EDW). See Figure 2.1 for an example of LSA in a traditional BW system.

LSA is a robust and valuable design, but it can be expensive to design, implement, and maintain, both from a development perspective and from a database volume perspective. In addition, the fact that there are multiple data staging layers introduces latency in moving data from the acquisition layer to the report and visualization layers, thus delaying consumption of data by end users.

With SAP BW 7.4 on HANA, the LSA architecture is replaced with LSA++. Recommended for SAP HANA only, LSA++ is an updated design and architecture standard which can be used to simplify your EDW architecture. See Figure 2.2 for an example of the LSA++ architecture.
Figure 2.1: LSA example

Figure 2.2: LSA++ example
INDEX

B Index

A
ADR tables 114
ASCS 146
ASU Toolbox 140, 148

B
BDCP table 106
BEx WAD templates 126
BI housekeeping 139
BI self-service 65
BOBJ 68
 Analysis 72
 BusinessObjects Explorer 72
 Crystal Reports 74
 Dashboards 68
 Design Studio 75
 Lumira 76
 Web Intelligence 70
Budgeting 41
 Continued support 43
 Training 42
Business case 23
BusinessObjects 66
BW 7.4 authorization objects
 RSHAAP 126
 RSHAOT 126
 S_RS_HCPR 126
 S_RS_ODSP_H ODP 126
 S_RS_ODSV 126
 BW cleanup 80

C
CLUR4 105

D
Database backup 145
DBACOCKPIT 157
DBTABLE 113
DD_NAMETAB_DELETE 123
DD_SHOW_NAMETAB 123
DTP objects 83

E
Environment planning
 Development environment 49
 Production environment 52
 QA environment 50

G
Greenfield 10
INDEX

H
HANA DB backup 155
Hardware 55
 Scale out 57
 Scale up 56

I
ICNV 101

L
Layered Scalable Architecture 26
LSA 26
LSA++ 26, 64

M
Matchcode IDs 108
Migration checklist 128
MIGTIME analysis 151
Milestone plan 45

N
Near-line storage 85
NLS 85

O
Offline DB backup 148
Open transports 141
Optimization 59
 ABAP 64
 Data flow 64
 InfoCube 65
 InfoCubes 60

P
Performance monitoring Dashboard 237
DBACOCKPIT 229
HANA Studio 225
Planning
 Onboarding and setup 46
Post-migration 158
Prerequisites 93
Primary application server 156

Q
QCM tables 115

R
RADNTLANG 116
RDA daemons 148
RSBATCHDATA 85
RSCP0126 105
RSCPINST 110
RSEC_MIGRATION 126

S
SAP Host Agent 131
SAP kernel update 101
SAP NetWeaver BW
 Migration Cockpit 38
SAP_BW_BEFORE_UPG
 RADE task list 89
SAP_BW_HOUSEKEEPING
 NG task list 88
SAP_DROP_TMPTABLE
 S 114
INDEX

SDBI_CLUSTER_CHECK 106
SE16 108
SE38 105, 110
Security conversion 124
Sizing 34
 Rule-of-thumb sizing 36
 SAP BW on HANA automated sizing tool 38
 T-shirt sizing model 35
SMLT 108
SNOTE 100
SPAM 102
SPAU 100
SPDD 100
SPUMG 115, 117
Staffing 31
 Large & very large projects 33
 Medium projects 32
 Small projects 31
Statistical cube data 81
Step-by-step instructions 129
SUM for DMO 132
Support Package Manager 102

T
Task list 164
 Access management 167
 Cutover 224
Delta queue cloning 180
Export preparation 195
Hardware provisioning 165
Homogenous database copy 181
Housekeeping 189
PCA installation 174
PCA preparation 176
Post-copy 183
Post-migration 216
Source BW preparation 168
Unicode preparations 171
Upgrade preparation 202
Upgrade with DMO 208
TBATG 101
TCP0I 108
TCPDB 108
TERM_DELETE_INCORRECT_CHARSET 111
Time Analyzer 151
Transaction remote function call 85
tRFC 85
TWTOOL01 109

U
UCCHECK 105
UMG_ADD_DOWNTIME_STEP 123
INDEX

UMG_SHOW_UCTABS 123
Unicode 117
 Nametabs 122
Unicode conversion 104

V
 VER_CLUSTR 105

W
 Write-optimized DSOs 84